天环净化设备从事生活污水处理、工业废水治理、中水回用系统设计、固体废弃物处理、环境服务等业务。公司生产污水处理环保设备各规格的产品。在矿山废水、尾矿浓缩脱水、生活污水、新农村社区改造工程、工业园废水、高浓度有机废水、医疗废水、氯碱废水、化工污水、印染废水、食品加工废水、污水回用等设备。
磷酸吡哆醛作为转氨酶的辅酶,参与人体内氨基酸、糖和脂类的代谢,主要用于氨基酸和生物分子合成,如神经递质血清素、多巴胺、肾上腺素、去甲肾上腺素、γ-氨基丁酸(GABA)和组胺。目前国内外5-磷酸吡哆醛工业合成主要利用化学法,反应以吡哆醇为原料,经氧化、缩合保护、磷酰化、水解等工艺,得磷酸吡哆醛粗品。吡哆醛合成工艺中大部分利用二氧化锰作为氧化剂,该工艺会产生大量含锰废水。目前大多数企业选择在整个工艺结束时将废水集中处理,但因多步工艺中废水成分复杂,很难对锰离子资源化利用。
当前锰离子回收多利用双氧水氧化回收二氧化锰,也有报道在碱性下,通过离子置换来完成。我国含锰废水处理工艺先使用碱化除锰法,废水集中收集后投加石灰、NaOH、NaHCO3等碱性物质,将pH值提高到10以上,将Mn2+氧化成MnO2析出,但如废水中其他杂质含量高,就无法有效回收。针对这类废水,朱乐辉等针对某些工艺流程中产生的酸性高浓度含锰废水,创造性的使用了“石灰石沉淀+过滤+石灰沉淀+混凝沉淀”的处理方法。李萌等利用纳滤膜处理电解锰生产过程中产生的含锰废水,在操作压力为2.0MPa的条件下,纳滤膜对Mn2+的截留率为90.69%,但滤膜容易被堵,寿命较短,需要多次更换,成本增加,工业化应用进程受到限制。本文提出分阶段调控耦合膜过滤处理含锰废水,利用化学沉淀与膜过滤法相结合处理,协同处理含锰废水,资源化利用制备碳酸锰。
1、实验方法
石墨相氮化碳载银纳米复合膜制备:取10g尿素放入有盖瓷碗中,置于马弗炉下0.5小时内由室温升至550℃,4小时后自然降温得g-C3N4;取上述制备的g-C3N45g加入500mL去离子水中,超声30分钟,使其均匀分散,后将100mLAgNO3水溶液和120mL无水甲醇滴加到g-C3N4溶液中,将混合液在高压汞灯照射下搅拌12小时后离心、洗涤、干燥备用。将不同质量的上述氮化碳载银粉末加入到N,N-二甲基甲酰胺(DMF)中并通过搅拌充分分散。在混合液中加入相同质量的PES,置于60℃烘箱中加热直至
现代工业作为国民经济的支柱产业,在经济建设过程中的价值越来越突出,在工业化发展过程中,往往会对社会环境造成严重危害。当前阶段,国内工业企业逐渐增多,环境污染程度愈发严重,尤其是废水污染,一旦在发展过程中没有对其做好监督管理工作,就会严重威胁广大人民群众的身体健康,对社会大环境的发展也会产生极其负面的影响。专门负责废水处理的部门一定要做好废水处理工作,助力环境的可持续健康发展。为提高工业废水的处理效率和质量,各化工企业及相关环境保护部门必须要优化污水处理技术,科学应用污水处理技术,有效提高废水控制及处理水平。
1、化工废水的基本来源及特征
1.1 化工废水的基本来源
化工企业生产经营过程涉及的化工原料生产活动较多,且化工原料本身就含有一定的水分,其水分排出之后自然就成为了工业废水。化工企业在生产过程中,会使用大量水,化工原料的生产过程也会伴随废水的排放,特殊化工产品在生产过程中受到化学物品及药剂间的反应,肯定也会有工业废水产生,冷却用水也会大量产生废水。在化工生产过程中的原料生产、运输、存储过程中,受到运输物料流失、运输中遇到降雨、降水等侵蚀也会产生工业废水。
1.2 主要表现特征
化工废水的类别很多,例如石油化工废水、合成化工工业废水、纺织印染废水、医疗化工废水等。其中石油化工废水主要是来源于炼油环节产生的气体、清油、重油热裂解中产生的化工原料生产废水,此类废水的有机物含量较多,部分工业废水还有明显的刺鼻味道。合成化工废水的基本来源是合成染料、橡胶、洗涤剂等产生的生产废水,此类工业废水颜色较重,降解难度较大,还有毒性。纺织印染工业产生的废水,主要来自棉麻加工、混纺过程的染色、印花、上装等工序,这类废水中的有机物含量相当高,废水色度较深,废水的pH值普遍较高,且废水水质的整体变化显著。医疗化工生产过程也会有大量废水产生,医疗废水中的主要成分为抗生素、合成药物、中成药等。废水既会在生产过程中产生,也会在药物清洗过程中产生,医疗废水中的有机物含量高,水质酸碱性变化显著,有部分药物成分残留,这就给污水处理工作带来了一定的困难。综合化工废水中的污染物成分相当复杂,水质TDS较高,无论是酸碱性还是水量均无法高效控制,其中还含有很多有毒、有害甚至无法降解的物质,一旦化工废水排放达到一定程度,其可生化性就会变得很差。
2、有效处理化工企业废水的重要性
2.1 促进水资源使用效率的提升
随着化工行业的不断发展,生产产生的废水量及复杂程度越来越高,废水处理成效将会对广大人民群众的生命健康安全造成影响。有效保护环境不仅能够提升水资源的使用效率,还可以改善用水短缺的问题。还可以有效减少有害细菌的滋生,使水源不会受到污染,从而高效推进工业废水的净化工作,达到水资源二次利用的目标,如将处理后的废水用于灌溉、养花等。做好化工废水处理工作,能够极大提升水资源的使用效率,突出水资源的价值,将其应用优势发挥到佳效果。
2.2 提升社会大环境发展的稳定性
高度重视化工企业废水处理工作,对推动社会大环境的稳定发展具有重要作用。工业生产产生的工业废水量大且杂,做好此类废水的处理工作可以极大地减少废水带给社会大环境的危害。相关企业有必要及时高效地做好废水处理工作,切实保障生态环境的健康,助力社会向更加和谐稳定的方向发展。在处理废水的过程中,还会得到很多有用的物质,对其进行二次利用,从面提升了水资源的整体利用率,使水资源紧张的问题得到很好地缓解,提高我国整体的经济效益。
2.3 有利于保护生物及农作物
工业生产特别是化工生产过程中产生的废水,主要包括强酸、强碱等物质,这些物质会直接危害农作物和水生物。在化工生产过程中,有效解决水资源处理问题是关键,也只有做好水资源处理工作,才能为农作物、水生物等提供有利的生长空间。
3、化工生产废水处理存在的问题
现代社会发展速度飞快,化工产品的需求量在不断提升,而化工产品生产过程中产生的废水也越来越多。在我国化工行业不断发展的情况下,化工废水的治理已经逐渐成为当前社会发展中需要解决的重要问题,相关企业及应予以重视。例如炼油废水,大部分呈现乳状液体形式,水质相当复杂,污水量较大,废水中的有机化学组分也非常复杂,例如硫化物、氨氮、COD、TP、硝态氮、氟化物、酚类等,此类污水不易降解且可生化性极差,其处理工作开展起来困难重重。一旦这些化工生产废水没有经过达标处理直接排放到水域中,会造成大范围的生态破坏,从而威胁广大公众的衣食住行等各方面。现阶段化工企业废水处理工作暴露的突出问题如下:废水处理过程存在着明显的资源浪费情况,且废水处理质量不高,处理效率较低,其中常见的问题是资源严重浪费。化工生产过程中会产生很多副产品,这些副产品的酸碱性不同,想要实现资源互助的几乎不可能,化工企业往往选择分类处理的方式对其进行处理之后再排放,这就加大了废水处理工作的负担,部分可再利用的资源被严重浪费,而有些企业一味地关注眼前利益并没有严格遵照规章标准完成废水处理工作,导致部分化工原料浪费严重,还有些企业没有做好污水处理的规划及实施工作,使废水处理成效不佳。
4、化工废水处理技术
4.1 化学处理法
化学处理法在化工企业废水处理中比较常用,主要由混凝法、氧化还原法等组成,化学处理法能够有效分离被溶解的毒性物质,通过在废水中加入对应的药剂来改变毒性物质的结构从而将其毒性削弱。为了提升对工业生产化工废水不同性质污染物的处理成效,相关企业要结合自身的具体情况,选择多样化的处理策略,例如针对低浓度含酚废水,一般应用混凝法及氧化还原法进行处理,可高效去除废水中的高分子有机物及有害重金属。
4.1.1 混凝法
混凝法在降低污水浑浊度方面独具优势,可有效去除水体中的重金属离子。将混凝剂直接加入到废水中,会大大降低胶体颗粒之间的互斥力,使胶体颗粒发生碰撞聚沉之后产生混凝体,混凝体可轻松与水分离,从而达到了水质净化的目的。混凝法在预处理方面也有明显优势,尤其是对细小悬浮颗粒以及胶体微粒的去除率更显著,去除率甚至高达九成。
4.1.2 氧化法
氧化法适用于处理废水中无机及有机污染物,涉及共价键的有机物在使用氧化法时氧化还原的过程相对复杂,部分电子云密度会改变。氧化法包括臭氧氧化、湿化氧化法等,其中臭氧氧化法比较适用于处理有毒污染物及降解难度较大的有机物,也可用于对废水进行除菌、降臭、降浊等,操作流程相对简单,也不会产生二次污染,利用臭氧氧化法可以提升难降解有机物的可生化性。臭氧的稳定性差、氧化性强,还有一定的腐蚀性,往往需要现场制备,且电耗较高,该方法的应用成本相当高。而湿化氧化法应用优势显著,无论是氧化速率还是处理速率都比较高,在强毒性、难降解的有机物处理方面发挥着重要作用,与臭氧氧化法相比,湿化氧化法的作用时间短,成本较低,应用便捷且广泛。
4.2 物理处理法
处理废水中悬浮物时一般采用物理处理法,该方法不会改变污染物的性质即可实现对污染物的分离和回收。物理处理法在降解难度大的悬浮物及毒性物质方面应用广泛,且去除悬浮颗粒及难降解有机物时,操作简单,处理成本较低。常用的物理处理法包括筛选法、沉淀法、气浮法、吸附法、膜分离法和蒸发法等。
4.2.1 筛滤法
筛滤法是利用相应的介质或设备拦截经过混凝或生物法处理后的废水中的悬浮物及胶粒物,防止这些污染物对泵、阀等形成堵塞,其中格栅在废水处理中比较常用,是重要的辅助性设施,是由一组平行栅条构成。筛滤法细分为过滤及反冲洗两个阶段。
4.2.2 沉淀法
沉淀法是基于重力场的作用,利用废水中悬浮颗粒及水的密度差实现固液的有机分离。如果悬浮物密度比水密度小,悬浮物就会浮于水的上方,否则会下沉。沉淀法主要适用于废水预处理及初步处理等阶段。
4.2.3 气浮法
气浮法作为中间处理步骤,一般用在混凝之后,处理对象为小直径悬浮固体颗粒物。该方法是将空气直接通入废水中,直接析出微小分散的气泡。由于周围存在大量气泡,一些疏水性的细小悬浮污染物会在气泡上附着,克服了阻力影响产生气浮,当水中出现大量气泡的时候代表着分离完成。该方法适用于疏水性悬浮颗粒的处理。为了达到提升泡沫稳定性的目的,可增加混凝剂或者表面活性剂的。
4.2.4 吸附法
吸附法在降色除臭等方面具有明显的优势,需要使用大量的吸附剂,吸附周期不长。物体受到表面张力的影响,会导致表面分子受力不均,表面分子不能移动使得固体分子只能吸附气体分子。绝大部分悬浮杂质选择多孔亲油以及大比表面积固体作为吸附剂,可以起到理想的吸附效果,并对吸附后的产物进行富集处理。吸附法还可与其他废水处理法相结合,达到更加显著的污水处理效果。
4.2.5 膜分离法
膜分离法根据膜分离推动力,可细分为自然渗析、电渗析、反渗析、超滤法、液膜技术等几类。根据应用膜的类别可分为有机膜处理法和无机膜处理法。膜分离法是通过不同孔径的薄膜材料,有选择性地过滤大分子杂质,并使小分子物质直接透过,实现了净化水的目的。膜分离法所使用的设备简单,调控便捷,占空间小,处理效率高,渗透膜很容易被污染,且由于操作系统较为复杂性,需要定期进行消毒处理。
4.3 生物处理法
生物处理法充分利用了微生物的新陈代谢作用,把存在于污水中呈现溶解或者胶体态的有机物分解氧化成相对稳定的无机物,从而达到净化污水的目的。
4.3.1 活性污泥技术
活性污泥法作为应用广泛、成熟的好氧生物处理技术,其处理条件为曝气条件,好氧微生物大量繁殖形成了污泥状的絮结物质,这些泥状物会吸附废水中大量的有机物,并对其进行分解,进而达到净化水质的目的。活性污泥法的缺点是会出现大量的剩余污泥,这些污泥处理起来难度系数较大。基于此,其研发工作应从污染源头展开。
完全溶解。将溶解的铸膜液搅拌至透明状后在60℃下静置脱泡。待铸膜液冷却至室温后,用刮刀均匀地刮在无纺布上,将其迅速浸入纯水中固化成膜并浸泡24h,以使溶剂交换和相转化完全。
含锰废水的处理方法:在50mL圆底烧瓶中投入10mL的含锰吡哆醛液,加入20mL水稀释成吡哆醛水溶液,在一定温度下,搅拌下缓慢加入10%~20%浓度的碳酸钠或碳酸氢钠溶液至pH达到8~8.5,碳酸锰析出。将溶液减压抽滤,得到吡哆醛合成液与碳酸锰固体,立刻将碳酸锰固体低温真空干燥密封,剩余吡哆醛合成液继续下一步反应。将希夫碱合成后的废水继续处理,搅拌下缓慢加入10%~20%浓度的碳酸钠或碳酸氢钠溶液至pH达到8~8.5,滤液废水通过氮化碳载银纳米复合膜过滤生成回用水能循环利用于生产中,通过膜富集的盐可做成工业盐回收利用。
水性涂料是以水为分散介质,相对溶剂型涂料在生产中多使用挥发性较强和毒性较大的有机溶剂,水性涂料中溶剂含量较低,大大减少了VOC(挥发性有机物)的排放。近年来,由于环境保护及健康安全的要求不断提高,水性涂料在建筑装饰、家具、汽车、集装箱、轨道交通、风电等行业得到了越来越多的应用,水性涂料产品受到青睐,全球水性涂料市场持续增长。
水性涂料主要成分除成膜物外,还含有大量助剂、颜填料。水性涂料废水成分复杂,色度、浊度、悬浮物、COD含量较大,属于典型难处理废水。
目前对于水性涂料生产废水处理基本采用物化、生化、氧化及3种工艺的组合处理技术路线。物化处理通常为混凝沉淀或酸析工艺,物化工艺成熟简单,对悬浮物及胶体有非常高的去除效率,但对于溶解性的污染物去除效率不高,通常只能作为预处理工艺;生化法通常用于处理物化后出水,借助于微生物的降解作用,可有效去除废水中的溶解性污染物质,生化法是一种经济的处理方式,但对于涂料工业中大量使用的难降解有机物的去除效率不高,生化工艺普遍存在着微生物培养及管理困难、运行操作要求高的问题;近年来随着排放标准的日益严格,芬顿等氧化工艺处理水性涂料废水的研究及应用也日益增多,芬顿反应对难降解有机物有高效的去除效果,但运行药剂投加量大,所产生的污泥较多,综合处置成本较高,另根据本项目前期的研究及实践成果,水性涂料废水采用芬顿氧化,存在反应速率慢,周期长甚至芬顿反应失败的现象,上述问题尚未见研究报道。由于实际水性涂料废水水质成分的差异,实际的处理过程中,氧化与生化的工艺顺序、氧化工艺的反应时间控制、氧化辅助手段等都可能对处理效果及成本产生较大影响。
本文以广州增城某水性木器家具涂料生产公司产生的水性涂料废水为研究对象,结合前期工程及实验成果,将操作运行较为简单的SBR生化工艺及反应速率高的紫外芬顿工艺引入水性涂料废水处理,开展了水性木器家具涂料废水SBR生化处理与紫外芬顿氧化联合工艺的优化研究,给出了适用于中小型水性木器家具涂料生产企业废水处理的可行工艺技术路线。
1、实验部分
1.1 实验原料及仪器
硫酸(95%~98%):分析纯,佛山市华西盛化工有限公司;氢氧化钠(96.0%)、七水硫酸亚铁(99%):分析纯,天津大茂化学试剂厂;双氧水(H2O2,30%):工业级,江门市天泽化工有限公司;聚合氯化铝(PAC,28%):工业级,巩义市茂泉净化材料有限公司;聚丙烯酰胺(PAM,阳离子,相对分子质量1.2×107,离子度50):工业级,山东诺尔化工有限公司。
COD消解仪:JQ-101X,泰州市加权仪器有限公司;紫外分光光度计:UV-725N,上海佑科仪器仪表有限公司;便携式pH计:PHB-1,杭州齐威仪器公司;多头磁力搅拌器:XR7045232,常州金坛区西城新瑞仪器厂。
本研究废水取自广州增城某水性木器家具涂料生产企业,生产废水原水悬浮物含量较高,经过铁盐及PAM混凝预处理后,再经过板框全量压榨脱水,脱水后滤出水pH基本控制为中性,其化学需氧量(COD)在3000~6000mg/L之间(与生产波动及清洗频次有关),经化验板框压滤后的水性涂料废水B/C(生化需氧量/化学需氧量)在0.4左右,具有一定的生化性(经与业主沟通,B/C相对偏高的原因可能是产品中有部分小分子及易降解配方但由于水性涂料废水含有大量难降解有机物,达到相应的排放标准有较大难度。
1.2 实验方法
1.2.1 处理思路
根据初步的化验分析,水性涂料废水中含有大量的小分子有机物助剂,适宜用生化处理,但由于大量难降解有机物质的存在,生化处理难于达标,需要借助氧化工艺深度去除难降解有机物,结合工程经验及研究现状,本研究初步设计包含生化实验及氧化实验两部分内容,即先采用生化方法去除小分子有机物,降低后续芬顿反应药剂投加量的消除芬顿反应淬灭剂提高反应效率,生化后难降解废水通过氧化去除。
1.2.2 生化实验方法
根据实际调研,由于目前水性涂料企业多为中小型企业,每天废水产生量多在1~10t,且具有间歇排放的周期性,较适宜采用操作运行较为简单的SBR反应系统,考虑到多组实验的方便性,本研究采用SBR形式模拟生化反应。
设计数个SBR反应器,分别模拟SBR形式的好氧、厌氧及厌氧+好氧工艺对COD的去除实验,实验过程控制活性污泥质量浓度为4000~5000mg/L,控制SBR反应器充水比(SBR工艺一个周期中,进入反应池的污水量与反应池的有效容积之比)为5%~50%,为防止溶解氧过高造成“污泥过曝”,采用曝气2h、静置2h的曝气模式,以24h为一个反应周期,反应结束后经沉淀排出上清液后再进水进行下一批次反应(具体反应条件详见2.1)。
实验用SBR反应器是有效容积为1L的烧杯,采用鱼缸增氧泵及气泡石增氧曝气,模拟厌氧反应则采用转子搅拌的形式,接种污泥为某CASS(周期循环活性污泥法)工艺市政污水处理厂生化池活性污泥。
1.2.3 氧化实验方法
考虑水性涂料废水中大量的难降解有机物无法在生化阶段去除,前期研究表明,常规芬顿去除水性涂料废水其反应周期过长,故本研究采用常规芬顿及紫外芬顿工艺开展氧化实验,对比考察反应速率及去除效果。
芬顿氧化主要实验方法为将生化出水废水pH调到3~4后,加入不同量Fe2+和H2O2,搅拌反应后调pH至中性,投加少量混凝剂后静置沉淀30min,取其上清液测COD。
为加快反应速率,在常规芬顿反应器中引入紫外光强化反应速率,引入紫外光强度约为10W/L。
1.2.4 水质监测方法
COD采用HJ828—2017的重铬酸盐法测定;pH、溶解氧(DO)由便携式水质检测仪测定。
2、结果与讨论
2.1 生化去除效果分析
2.1.1 好氧SBR生化效果分析
好氧反应在不同的充水比工况下开展,根据工程经验及前期研究成果,设计采用10%、20%、50%三种充水比开展试验研究,试验原水的COD为4820mg/L,接种市政污水处理厂(CASS工艺)污泥,控制污泥质量浓度约为5000mg/L,反应周期设计为24h(结合工程经验及企业日常运行方便确定)。为模拟正常溶解氧浓度,维持合适曝气强度,采用曝气2h、停止曝气2h的间歇曝气模式,在不同充水比工况下运行至足够周期,确保出水稳定,设置平行样以获得准确去除数据