氧化铝比热容检测,dsc试验
对于弹性材料(材料无粘弹性质),动态载荷与其引起的变形之间无相位差(ε=σ0sin(ωt)/E)。当材料具有粘弹性质时,材料的变形滞后于施加的载荷,载荷与变形之间出现相位差δ:ε=σ0sin(ωt+δ)/E。将含相位角的应力应变关系按三角函数关系展开,定义出对应与弹性性质的储能模量G’=Ecos(δ)和对应于粘弹性的损耗模量G”=Esin(δ)E称为模量E=sqrt(G’2+G”2)由于相位角差δ的存在,外部载荷在对粘弹性材料加载时出现能量的损耗。粘弹性材料的这一性质成为其对于外力的阻尼。阻尼系数γ=tan(δ)=G’’/G’ 高分子聚合物的粘弹性大小体现在应变滞后相位角上。当温度由低向高发展并通过玻璃化转变温度时,材料内部高分子的结构形态发生变化,与分子结构形态相关的粘弹性随之的变化。这一变化反映在储能模量,损耗模量和阻尼系数上。下图是聚乙酰胺的DMA曲线。振动频率为1Hz。在-60和-30°C之间,贮能模量的下降,阻尼系数的峰值对应着材料内部结构的变化。相应的温度即为玻璃化转变温度Tg。
典型DSC曲线
6.核磁共振法(NMR)温度升高后,分子运动加快,质子环境被平均化(处于高能量的带磁矩质子与处于低能量的的带磁矩质子在数量上开始接近;N-/N+=exp(-E/kT)),共振谱线变窄。到玻璃化转变温度,Tg时谱线的宽度有很大的改变。利用这一现象,可以用核磁共振仪,通过分析其谱线的方法获取高分子材料的玻璃化转变温度。